慢性腎臟病(CKD)已成為全球公共衛(wèi)生領域的重大挑戰(zhàn),其發(fā)病機制與營養(yǎng)代謝的密切關聯(lián)正日益受到關注。銅作為人體必需的關鍵微量元素,在維持機體抗氧化防御系統(tǒng)和能量代謝平衡中發(fā)揮著不可替代的作用。然而,這種必需微量元素的"雙刃劍"特性——特別是膳食銅攝入與腎臟健康之間的劑量-效應關系——目前仍缺乏明確的科學界定。現(xiàn)有研究多集中于銅的職業(yè)暴露或遺傳代謝異常(如Wilson?。┑葮O端情況,而普通人群長期膳食銅攝入水平與CKD發(fā)病風險之間的流行病學關聯(lián),仍亟待大規(guī)模前瞻性研究提供高質量循證依據(jù)。
(圖片源于網(wǎng)絡,版權歸原作者)
南方醫(yī)科大學南方醫(yī)院國家腎臟病臨床研究中心開展的一項研究,為膳食微量營養(yǎng)素與CKD的關聯(lián)提供了重要證據(jù)。該研究成果近期發(fā)表于營養(yǎng)學領域權威期刊《Molecular Nutrition & Food Research》。研究首次揭示,在普通人群中膳食銅攝入量與CKD風險之間存在顯著的U型關系:銅攝入不足或過量均可能增加CKD發(fā)生風險,而中等攝入量范圍則顯示出保護效應。
本研究采用前瞻性隊列設計,共納入4,038名基線無CKD的18-30歲健康受試者。通過經過驗證的半定量食物頻率問卷(FFQ)評估膳食銅攝入量,并采用累積平均法計算長期攝入水平。研究充分校正了總能量攝入、人口統(tǒng)計學特征及主要生活方式因素等潛在混雜變量。采用Cox比例風險回歸模型進行分析,主要研究終點為新發(fā)CKD,定義為:估算腎小球濾過率(eGFR)持續(xù)<60 mL/min/1.73 m2和/或尿白蛋白/肌酐比(ACR)≥30 mg/g(經重復檢測確認)。
在中位29.7年的長期隨訪期間,共觀察到642例(15.9%)新發(fā)CKD事件。限制性立方樣條分析顯示膳食銅攝入與CKD風險呈顯著U型關聯(lián)(非線性檢驗P=0.034)。具體而言,最低風險對應的銅攝入?yún)^(qū)間為2.03-2.46 mg/天。與最佳攝入組(2.03-<2.46 mg/天)相比,銅攝入不足組(<2.03 mg/天)和過量組(≥3.11 mg/天)的CKD風險分別顯著增加29%(HR=1.29, 95%CI: 1.07-1.56)和49%(HR=1.49, 95%CI: 1.21-1.83)(圖1)。
圖1. 能量校正后膳食銅攝入量與慢性腎病新發(fā)病風險的關聯(lián)
現(xiàn)有研究證據(jù)為上述發(fā)現(xiàn)提供了合理的生物學機制解釋,揭示了銅在腎臟健康中的雙重作用機制(圖2)。
圖2. 膳食銅攝入與腎臟相關的機制
在生理濃度范圍內,銅離子作為銅鋅超氧化物歧化酶(SOD1)等關鍵抗氧化酶的核心輔因子,通過以下途徑發(fā)揮腎臟保護作用:1)維持線粒體電子傳遞鏈功能;2)減輕氧化應激損傷;3)抑制轉化生長因子-β(TGF-β)介導的腎纖維化進程。因此,銅攝入不足會導致:1)抗氧化酶系統(tǒng)功能受損;2)活性氧(ROS)清除能力下降;3)加速腎臟氧化損傷。
此外,過量銅攝入可通過以下病理機制促進腎臟損傷:1)Fenton反應介導的羥基自由基大量生成;2)促炎因子(如TNF-α、IL-6)的過度激活;3)賴氨酰氧化酶(LOX)依賴性纖維化通路的上調。值得注意的是,近期動物模型研究證實,銅超載可導致近端腎小管上皮細胞內銅特異性蓄積,通過以下途徑誘發(fā)"銅死亡":a)線粒體三羧酸循環(huán)關鍵酶聚集;b)鐵硫簇蛋白異常降解;c)蛋白質毒性應激反應。這一新發(fā)現(xiàn)的程序性細胞死亡方式可能為人類CKD的進展機制提供了新的解釋。
本研究為膳食銅攝入的安全范圍提供了重要科學依據(jù),建議健康成年人每日銅攝入量維持在2.0-2.5 mg的優(yōu)化區(qū)間。為實現(xiàn)這一目標,推薦通過多樣化膳食來源(如堅果、海產品和全谷物)進行補充。特別需要強調的是,對于慢性代謝性疾?。ㄈ绶逝?、糖尿病和高血壓)患者,臨床醫(yī)師應加強銅營養(yǎng)狀況監(jiān)測,嚴格規(guī)范銅補充劑的使用指征。
銅的攝入需“恰到好處”,不足與過量皆可傷腎。守住黃金范圍,為腎臟健康筑起防線??茖W飲食,遠離慢性腎??!
健康小貼士:常見含銅食物分類表及科學補銅指南
根據(jù)銅含量分類的常見食物表格
(參考《中國食物成分表》標準版第6版及USDA食品數(shù)據(jù)庫)
科學補銅指南
普通成人膳食銅的推薦攝入量為每日2.03-2.46毫克,建議優(yōu)先選擇中低銅食物,高銅食物建議控制單次攝入量,特殊人群(如Wilson病患者)需嚴格遵醫(yī)囑控制銅攝入。通過明確食物種類和克數(shù),可更精準地實現(xiàn)銅攝入的“黃金窗口”。
普通成人可通過以下飲食組合實現(xiàn):
1. 安全高銅型(總銅:2.3mg)
早餐:
牛奶200ml(銅0.02mg)
白面包2片(100g,銅0.1mg)
蘋果150g(銅0.08mg)
腰果8粒(15g,銅0.3mg)
午餐:
牡蠣2只(33g,銅1.3mg)
米飯100g(銅0.08mg)
清炒西蘭花100g(銅0.05mg)
豆腐50g(銅0.07mg)
晚餐:
雞胸肉100g(銅0.06mg)
蒸南瓜150g(銅0.12mg)
涼拌黃瓜100g(銅0.03mg)
雞蛋1個(銅0.08mg)
2. 均衡分散型(總銅:2.4mg)
早餐:
燕麥片40g(銅0.05mg)
黑巧克力15g(銅0.3mg)
香蕉1根(銅0.08mg)
全麥面包1片(50g,銅0.17mg)
午餐:
瘦牛肉100g(銅0.3mg)
干香菇10g(泡發(fā)后,銅0.3mg)
糙米飯80g(銅0.2mg)
胡蘿卜炒雞蛋(雞蛋1個+胡蘿卜50g,合計銅0.13mg)
晚餐:
豬里脊80g(銅0.16mg)
標準面條100g(銅0.32mg)
菠菜50g(銅0.1mg)
杏仁10粒(15g,銅0.32mg)
3. 植物蛋白型(總銅2.1mg)
早餐:
豆?jié){200ml(銅0.1mg)
全麥饅頭80g(銅0.32mg)
梨150g(銅0.08mg)
午餐:
老豆腐100g(銅0.15mg)
腰果15g(銅0.3mg)
藜麥飯100g(銅0.25mg)
清炒蘆筍100g(銅0.1mg)
晚餐:
雞蛋1個(銅0.08mg)
紅薯150g(銅0.12mg)
黑木耳(干)5g(泡發(fā)后,銅0.3mg)
小白菜100g(銅0.05mg)
玉米粥1碗(銅0.25mg)
參考文獻:
- Zhang Y, Gan X, Xiang H, et al. U-Shaped Association Between Dietary Copper Intake and New-Onset Chronic Kidney Disease: A 30-Year Follow-Up Study From Young Adulthood to Midlife. Mol Nutr Food Res. 2025;69(4):e202400761. doi:10.1002/mnfr.202400761
- A. C. Webster, E. V. Nagler, R. L. Morton, and P. Masson, “ChronicKidney Disease,” Lancet 389 (2017): 1238–1252.
- Y. J. Kang, “Copper and Homocysteine in Cardiovascular Diseases,”Pharmacology & Therapeutics 129 (2011): 321–331.
- D. Horn and A. Barrientos, “Mitochondrial Copper Metabolism andDelivery to Cytochrome C Oxidase,” IUBMB Life 60 (2008): 421–429.
- A. N. Besold, E. M. Culbertson, and V. C. Culotta, “The Yin and Yangof Copper During Infection,” Journal of Biological Inorganic Chemistry 21(2016): 137–144.
- S. Bo, M. Durazzo, and R. Gambino, “Associations of Dietary andSerum Copper With Inflammation, Oxidative Stress, and MetabolicVariables in Adults,” Journal of Nutrition 138 (2008): 305–310.
- Y. L. Ma, Y. F. Yang, and H. C. Wang, “A Novel Prognostic ScoringModel Based on Copper Homeostasis and Cuproptosis Which IndicatesChanges in Tumor Microenvironment and Affects Treatment Response,”Frontiers in Pharmacology 14 (2023): 1101749.
- S. Zhu, W. Zhou, and Y. Niu, “COX17 Restricts Renal FibrosisDevelopment by Maintaining Mitochondrial Copper Homeostasis andRestoring Complex IV Activity,” Acta Pharmacologica Sinica 44 (2023):2091–2102.
- R. Kong and G. Sun, “Targeting Copper Metabolism: A PromisingStrategy for Cancer Treatment,” Frontiers in Pharmacology 14 (2023):1203447.
- W. Zhong, Y. Dong, and C. Hong, “ASH2L Upregulation Contributesto Diabetic Endothelial Dysfunction in Mice Through STEAP4-MediatedCopper Uptake,” Acta Pharmacologica Sinica 45 (2024): 558–569.
- J. Zhang, J. Cao, and H. Zhang, “Plasma Copper and the Risk of FirstStroke in Hypertensive Patients: A Nested Case-Control Study,” AmericanJournal of Clinical Nutrition 110 (2019): 212–220.
- R. Lei, C. Wu, and B. Yang, “Integrated Metabolomic Analysis of theNano-Sized Copper Particle-Induced Hepatotoxicity and Nephrotoxicityin Rats: A Rapid In Vivo Screening Method for Nanotoxicity,” Toxicologyand Applied Pharmacology 232 (2008): 292–301.
- V. Kumar, J. Kalita, H. K. Bora, and U. K. Misra, “Relationship ofAntioxidant and Oxidative Stress Markers in Different Organs FollowingCopper Toxicity in a Rat Model,” Toxicology and Applied Pharmacology293 (2016): 37–43.
- Y. Zou, S. Wu, and X. Xu, “Cope With Copper: From Molecular Mechanisms of Cuproptosis to Copper-Related Kidney Diseases,” InternationalImmunopharmacology 133 (2024): 112075.
- S. Zhu, Y. Niu, and W. Zhou, “Mitochondrial Copper Overload Promotes Renal Fibrosis Via Inhibiting Pyruvate Dehydrogenase Activity,”Cellular and Molecular Life Sciences 81 (2024): 340.
- Y. Niu, Y. Zhang, and Z. Zhu, “Elevated Intracellular Copper Contributes a Unique Role to Kidney Fibrosis by Lysyl Oxidase MediatedMatrix Crosslinking,” Cell Death & Disease 11 (2020): 211.
- M. Yepes-Calderon, D. Kremer, and A. Post, “Urinary Copper Excretion Is Associated With Long-Term Graft Failure in Kidney TransplantRecipients,” American Journal of Nephrology 54 (2023): 425–433.
- N. Shukla, J. Maher, J. Masters, G. D. Angelini, and J. Y. Jeremy,“Does Oxidative Stress Change Ceruloplasmin From a Protective to aVasculopathic Factor?” Atherosclerosis 187 (2006): 238–250.
- J. Liao, F. Yang, and W. Yu, “Copper Induces Energy MetabolicDysfunction and AMPK-mTOR Pathway-Mediated Autophagy in Kidneyof Broiler Chickens,” Ecotoxicology and Environmental Safety 206 (2020):111366.
編輯 | 張藝煒
審核 | 秦獻輝 張園園