捧起她娇臀猛烈冲刺h,久久亚洲精品无码网站,公与媳系列100小说,欧美大片18禁aaa片免费,国产成人无码a区视频,xxxx欧美丰满大屁股 free,韩国在线无码中文字幕,2021年精品国产福利在线,日本成年片黄网站色品善网

版權(quán)歸原作者所有,如有侵權(quán),請(qǐng)聯(lián)系我們

Nephrin研究的機(jī)遇和挑戰(zhàn)

移路相伴
分享介紹器官移植領(lǐng)域國(guó)際前沿醫(yī)學(xué)研究成果
收藏

未明原因的pFSGS

近來(lái)研究顯示,抗-Nephrin自身抗體(Anti-nephrin Ab)在微小病變(MCD)和局灶性節(jié)段性腎小球硬化(FSGS)的發(fā)生中扮演重要的作用,本文概述了抗-Nephrin抗體作為MCD和原發(fā)性FSGS(pFSGS)的血液循環(huán)滲透因子的研究進(jìn)展,并對(duì)將來(lái)的研究方向提出了展望。

MCD和FSGS病因主要分三類(lèi):足細(xì)胞相關(guān)基因遺傳突變引起、感染或藥物使用等繼發(fā)性因素和不明原因的原發(fā)性因素造成。遺傳突變只占比在8~14%左右[1-3],繼發(fā)性因素占比20-30%[4-5],剩下的基本都是由不明原發(fā)性因素引起。

循環(huán)因子理論與FSGS

當(dāng)1972年Hoyer等[6]第一次報(bào)道了腎移植術(shù)后復(fù)發(fā)FSGS的患者開(kāi)始,研究人員就推測(cè)血液中某種循環(huán)滲透因子可能引起了FSGS的產(chǎn)生。隨之流行病學(xué)研究顯示,移植后FSGS具有較高的復(fù)發(fā)率,有時(shí)在移植后幾小時(shí)內(nèi)就會(huì)發(fā)生,這結(jié)果進(jìn)一步促使研究人員相信,致病因子可能不是“腎臟內(nèi)的局部現(xiàn)象”,而是一種血液循環(huán)滲透因子,它通過(guò)改變腎小球屏障來(lái)?yè)p傷足細(xì)胞[7-8]。直到2012年Gallon等[9]在一個(gè)FSGS復(fù)發(fā)的患者案例研究中發(fā)現(xiàn),當(dāng)移植腎被切除并再次移植給另一個(gè)沒(méi)有FSGS病史的受者時(shí),腎臟的功能得到了恢復(fù),且FSGS特有的組織病理學(xué)損害也發(fā)生了逆轉(zhuǎn),這基本確定了是血液中存在的某些循環(huán)滲透因子導(dǎo)致了FSGS的發(fā)生。

隨后幾年,大量的研究資源投入到尋找在MCD和pFSGS蛋白尿形成中起關(guān)鍵作用的循環(huán)滲透因子[10-11]。盡管投入了非常大的資源和研究努力,這些未知的循環(huán)通透性因子的鑒定一直是艱苦漫長(zhǎng)的,研究者并沒(méi)有找到可靠一致的生物標(biāo)志物。

一些被認(rèn)為增加血清蛋白血管透過(guò)性的候選生物標(biāo)志物分子(表1),包括可溶性尿激酶型纖溶酶原激活物受體(suPAR)[12]、心肌營(yíng)養(yǎng)素樣細(xì)胞因子-1 (CLCF-1)[13]、可溶性CD40配體[14]等等,已經(jīng)發(fā)現(xiàn)與MCD和pFSGS的進(jìn)展和復(fù)發(fā)相關(guān),但是驗(yàn)證其臨床效用的研究表明,這些標(biāo)記物并不在MCD和FSGS的發(fā)展中起到?jīng)Q定性作用,它們也可以在健康人和非腎病綜合征患者血清中檢測(cè)到[15-17]。

表1. FSGS和MCD相關(guān)循環(huán)滲透因子及其局限性

Nephrin蛋白介紹

1966年,在一組患有先天性腎病綜合征(NPHS1)[39]的芬蘭家系中,研究發(fā)現(xiàn)這是一種罕見(jiàn)的遺傳基因突變?cè)斐傻哪I臟疾病,但導(dǎo)致這種疾病的具體基因未知。直到1998年NPHS1基因所在的關(guān)鍵染色體區(qū)域被鑒定和測(cè)序, NPHS1基因的表達(dá)產(chǎn)物被命名為Nephrin,其基因座定位于染色體19q12-q13.1[40-41]。雖然Nephrin蛋白的精確結(jié)構(gòu)和功能在此時(shí)仍然未知,但據(jù)推測(cè),其結(jié)構(gòu)域結(jié)構(gòu)類(lèi)似于屬于免疫球蛋白家族的一大類(lèi)細(xì)胞粘附受體,它可以作為粘附受體和信號(hào)蛋白[40]發(fā)揮作用。在后續(xù)研究中[42-43],證實(shí)Nephrin是形成足細(xì)胞裂孔隔膜相關(guān)復(fù)合物(slit diaphragm, SD)的組成部分,其與腎小球內(nèi)皮細(xì)胞和基底膜(GBM)一起形成腎小球?yàn)V過(guò)屏障。(圖1)

圖1. Nephrin抗體誘導(dǎo)縱膈改變、足細(xì)胞損傷和蛋白質(zhì)滲漏入尿液中

Nephrin是一種跨膜蛋白,其N(xiāo)-末端為胞外片段,C-末端為胞內(nèi)結(jié)構(gòu)域,使用對(duì)人Nephrin的N-末端特異的抗體檢測(cè)證實(shí)了其位于腎的縱膈[44]。整個(gè)蛋白由八個(gè)免疫球蛋白樣胞外結(jié)構(gòu)域、一個(gè)纖連蛋白III型樣結(jié)構(gòu)域、一個(gè)跨膜結(jié)構(gòu)域和一個(gè)短的胞內(nèi)結(jié)構(gòu)域組成,它通過(guò)與肌動(dòng)蛋白細(xì)胞骨架[40,45]的相互作用而維持足細(xì)胞的組織形態(tài)結(jié)構(gòu)和功能。作為免疫球蛋白超家族的細(xì)胞表面受體蛋白,Nephrin還參與細(xì)胞間粘附和信號(hào)傳導(dǎo)功能。當(dāng)Src激酶家族的Fyn磷酸化Nephrin的胞內(nèi)結(jié)構(gòu)域的六個(gè)酪氨酸殘基(Tyr1114、Tyr1136、Tyr1176、Tyr1183、Tyr1193、Tyr1217)中的一個(gè)或多個(gè)時(shí),由Nephrin的胞內(nèi)尾部介導(dǎo)的下游信號(hào)傳導(dǎo)被激活[46]。具體表現(xiàn)為磷酸化的胞內(nèi)結(jié)構(gòu)域會(huì)與幾種足細(xì)胞胞質(zhì)蛋白相互作用,包括podocin、CD2AP、NEPH1和磷脂酰肌醇3-激酶(PI3K),以將下游信號(hào)傳遞到肌動(dòng)蛋白細(xì)胞骨架,從而調(diào)節(jié)足細(xì)胞的結(jié)構(gòu)完整性和腎小球?yàn)V過(guò)狹縫的功能[47-48]。磷酸化Nephrin促進(jìn)Nck銜接蛋白、ZO-1、連環(huán)蛋白、桶蛋白、足細(xì)胞素、CD2-AP和PI3K等的募集并與之相互作用,Nck銜接蛋白發(fā)出肌動(dòng)蛋白重塑的信號(hào),并參與多種細(xì)胞內(nèi)信號(hào)通路的調(diào)節(jié),從而影響對(duì)足細(xì)胞穩(wěn)定至關(guān)重要的肌動(dòng)蛋白的聚合動(dòng)力學(xué)[48-49](圖2)。

圖2. 相鄰足突之間的縫隙層示意圖。

腎病綜合征與Nephrin抗體

在對(duì)NPHS1基因(Nephrin)進(jìn)行鑒定和測(cè)序進(jìn)行研究之前,科學(xué)家已經(jīng)開(kāi)始對(duì)能夠結(jié)合到腎小球足突表面的抗體及其誘導(dǎo)蛋白尿的特征進(jìn)行了探索。Orikasa等人[50]用膠原蛋白酶處理過(guò)的Wistar大鼠腎小球免疫BALB/b小鼠,產(chǎn)生了高度器官特異性和物種特異性的抗體IgG1,稱(chēng)為mAb 5-1-6。在體外研究中,觀察到mAb 5-1-6結(jié)合到腎小球足突的表面。當(dāng)在大鼠中注射該mAb時(shí),立即誘導(dǎo)蛋白尿,不需要補(bǔ)體激活。**這項(xiàng)開(kāi)拓性的研究是建立循環(huán)滲透因子抗體和腎病綜合征蛋白尿誘導(dǎo)之間強(qiáng)關(guān)聯(lián)的證據(jù)。**該方法后來(lái)被研究人員用于在動(dòng)物模型中產(chǎn)生類(lèi)似的Nephrin抗體,以研究腎小球內(nèi)的Nephrin定位,并作為誘導(dǎo)蛋白尿和腎病狀況的潛在藥物靶點(diǎn)[42-43,51]。

雖然動(dòng)物模型已經(jīng)成功地證明了抗-Nephrin抗體在介導(dǎo)足細(xì)胞損傷中的作用,但在過(guò)去幾年中,研究其在腎病綜合征患者中的作用的報(bào)道仍然很少。Watts等人[37]最近進(jìn)行的一項(xiàng)多中心隊(duì)列研究,重新激發(fā)了人們對(duì)重新評(píng)估抗-Nephrin抗體和腎病綜合征發(fā)展之間關(guān)系的興趣。在研究招募的MCD患者中,18例(29%)抗-Nephrin抗體檢測(cè)陽(yáng)性,44例(71%)檢測(cè)陰性?;顧z分析顯示Nephrin所在的足細(xì)胞SD區(qū)域與點(diǎn)狀的IgG沉積共定位。在一些IgG沉積的活組織檢查中,出現(xiàn)一種Nephrin的重新分布遠(yuǎn)離SD的現(xiàn)象,表明抗體對(duì)Nephrin定位和破壞的影響。當(dāng)MCD活動(dòng)期患者接受治療時(shí),高水平的循環(huán)抗-Nephrin抗體顯著減少或消失,這與治療期顯著的蛋白尿減少相關(guān)。Hengel等人[36]最近的一項(xiàng)研究顯示,在539名被診斷為腎小球疾病的患者中,105名成人MCD患者中有46名(44%),74名FSGS患者中有7名(9%)都具有較高的抗-Nephrin抗體水平。此外,在被診斷為特發(fā)性腎病綜合征的兒童隊(duì)列中,182名中有94名(占52%)表現(xiàn)出較高水平的抗-Nephrin抗體。**在未接受免疫抑制治療的患者中發(fā)現(xiàn)MCD和特發(fā)性腎病綜合征患者的抗體陽(yáng)性率更是高達(dá)69%和90%。**在研究受試者中,與抗體檢測(cè)陰性的患者相比,陽(yáng)性的MCD和FSGS患者表現(xiàn)出更嚴(yán)重的腎病綜合征。在小鼠模型中,觀察到IgG沉積在足細(xì)胞的SD區(qū),特別是在出現(xiàn)足突融合區(qū)域沉積更明顯。Shirai等人[38]同樣報(bào)道了這一觀察結(jié)果。在隨訪期間,觀察到接受糖皮質(zhì)激素和環(huán)孢素免疫抑制治療的患者表現(xiàn)出短暫的緩解,而接受利妥昔單抗(CD20)治療的患者表現(xiàn)出抗體水平完全和持續(xù)的緩解[52]。為了檢測(cè)抗-Nephrin抗體對(duì)縱裂膈膜的直接作用,對(duì)注射抗體的小鼠在3周時(shí)的磷酸化蛋白質(zhì)組分析顯示Nephrin在酪氨酸殘基Y1191處磷酸化增加。這個(gè)酪氨酸殘基的磷酸化可能導(dǎo)致肌動(dòng)蛋白裝配、細(xì)胞骨架重組和Nephrin內(nèi)吞

在Cui和Zhao[53]關(guān)于Hengel等人[36]研究的綜述報(bào)告中,提出這些抗-Nephrin自身抗體可能不僅限于IgG類(lèi),在MCD和FSGS中也可觀察到其他類(lèi)如IgM的沉積。盡管Shirai等人[38]在復(fù)發(fā)期間的一些活組織檢查中觀察到痕量IgM和C3的沉積,但這表明這些沉積并沒(méi)有與Nephrin共定位。此外,在緩解后沒(méi)有觀察到IgG沉積的跡象,這表明循環(huán)抗-Nephrin抗體高度可能是一種循環(huán)通透性因子,與腎移植后復(fù)發(fā)的發(fā)病機(jī)制有關(guān)。在Bressendorff等人[52]最近報(bào)告的一個(gè)病例中,一名84歲的男性患者因呼吸急促和水腫入院,他有多種疾病史,包括3期慢性腎病,經(jīng)治療后出院?;颊咴俅稳朐簳r(shí),經(jīng)尿檢發(fā)現(xiàn)出現(xiàn)進(jìn)行性急性腎損傷,伴有低白蛋白血癥和蛋白尿。腎活檢顯示FSGS發(fā)展為與Nephrin重疊的點(diǎn)狀I(lǐng)gG沉積,伴有足突消失,但未觀察到IgM、IgA、C3、C1q或κ和λ輕鏈的形成,患者對(duì)糖皮質(zhì)激素治療無(wú)反應(yīng)。檢測(cè)顯示循環(huán)抗-Nephrin抗體陽(yáng)性,該抗體在血漿置換治療后逐漸下降。經(jīng)過(guò)七次血漿置換治療后,抗體水平低于檢測(cè)限,與對(duì)照人群中報(bào)告的水平相似,同時(shí)基線腎功能恢復(fù),腎功能保持穩(wěn)定一年半,無(wú)復(fù)發(fā)跡象。

腎移植FSGS復(fù)發(fā)與Nephrin抗體

在Shirai等人[38]進(jìn)行的一項(xiàng)多中心研究中,在22例FSGS腎移植受者(8例為基因突變致病和14例為非遺傳性患者)中,14例非遺傳性FSGS患者中有11例移植后出現(xiàn)FSGS復(fù)發(fā),與非復(fù)發(fā)FSGS(165 U/mL)和遺傳性FSGS(113 U/mL)患者相比,11例復(fù)發(fā)患者的抗-Nephrin抗體水平顯著升高(移植前和移植后復(fù)發(fā)時(shí)分別為831U/mL和1292 U/mL)。抗體水平的升高與提示出現(xiàn)了FSGS的復(fù)發(fā),抗-Nephrin抗體水平也與移植后患者的蛋白尿水平相關(guān),在復(fù)發(fā)性FSGS患者中觀察到更高水平的蛋白尿。最近Batal I等[54]評(píng)估了腎移植術(shù)前的抗-Nephrin抗體水平對(duì)術(shù)后彌漫性足細(xì)胞?。―P)復(fù)發(fā)的預(yù)測(cè)價(jià)值,回顧性分析了38例移植前留存有血清樣本的患者,在中位隨訪43個(gè)月(四分位距8-79個(gè)月)后,21例患者出現(xiàn)DP復(fù)發(fā),17例無(wú)DP復(fù)發(fā)。移植前抗-Nephrin抗體水平能夠預(yù)測(cè)疾病復(fù)發(fā)(曲線下面積0.78,P=0.03)。當(dāng)用之前研究的187U/ml作為閾值診斷時(shí),21例復(fù)發(fā)患者中有8例(38%)為抗體陽(yáng)性,17例無(wú)復(fù)發(fā)患者中全部為抗體陰性(P=0.005)???Nephrin抗體水平預(yù)測(cè)DP具有100%的特異性、100%的陽(yáng)性預(yù)測(cè)值、38%的敏感性和57%的陰性預(yù)測(cè)值。**提示術(shù)前高水平的抗-Nephrin抗體患者,術(shù)后要密切關(guān)注腎病的復(fù)發(fā)(本隊(duì)列顯示100%復(fù)發(fā)),需程序性監(jiān)測(cè)抗-Nephrin抗體水平。**生存分析(time-to-event analysis)結(jié)果顯示,移植前抗-Nephrin抗體陽(yáng)性的患者DP復(fù)發(fā)風(fēng)險(xiǎn)更高(風(fēng)險(xiǎn)比4.9,95%置信區(qū)間1.25-18.8,P<0.001)。

展望:機(jī)遇和挑戰(zhàn)

與其他血液循環(huán)滲透因子(suPAR、CD40等)不同,目前還沒(méi)有研究否定抗-Nephrin抗體作為FSGS和MCD的潛在標(biāo)志物和血液循環(huán)滲透因子的臨床價(jià)值。但是已報(bào)道的研究有一定的局限性,未來(lái)可能需要考慮和解決。

(1)超靈敏、標(biāo)準(zhǔn)化定量分析方法對(duì)于確???Nephrin抗體檢測(cè)準(zhǔn)確和可比性非常重要。目前主要限制因素是缺乏商業(yè)化的人抗-Nephrin抗體,且抗體是多克隆還是單克隆未知,不同患者間是否一致也未知。因此,目前依賴(lài)于用陽(yáng)性的患者血清來(lái)制備標(biāo)準(zhǔn)曲線,這會(huì)導(dǎo)致不同實(shí)驗(yàn)室的閾值不一致。例如,在Watts等人[37]的研究中,對(duì)于1:100的樣品稀釋度,健康人的最大抗-Nephrin抗體閾值設(shè)定為187 U/mL。在Shirai等人[38]的研究中,在1:400的樣本稀釋度下,抗-Nephrin抗體陽(yáng)性閾值被定義為最大抗體滴度(231 U/mL)。另外,抗-Nephrin抗體在血清中含量低,普通的ELISA很難準(zhǔn)確檢測(cè)到如此低豐度的抗體,特別在使用無(wú)抗原包被作為陰性對(duì)照時(shí),檢測(cè)結(jié)果(OD差值)為陰性的概率大,在Hengel等人[36]在新英格蘭雜志的研究中,通過(guò)使用對(duì)IgG抗體的富集來(lái)提高抗-Nephrin抗體在檢測(cè)樣品中的豐度。基于“富集路徑”的抗-Nephrin抗體檢測(cè)方法研發(fā),是未來(lái)高靈敏檢測(cè)的一個(gè)發(fā)展方向。

(2)是否有其它循環(huán)滲透因子參與pFSGS?已有研究顯示,并非所有被診斷患有pFSGS或MCD的患者的抗-Nephrin抗體檢測(cè)都呈陽(yáng)性。在Watts[37]研究中,在62名MCD患者中,只有18名抗-Nephrin抗體陽(yáng)性。這一結(jié)果提示,可能有其他循環(huán)滲透因子參與了剩余44例患者的MCD誘發(fā)。在Hengel等人[36]的研究中,觀察到94例特發(fā)性腎病綜合癥患兒為Nephrin抗體陽(yáng)性,而88例為陰性。在成人MCD患者中有46例抗-Nephrin抗體陽(yáng)性和59例抗體陰性,pFSGS患者中有7例抗體陽(yáng)性和67例抗體陰性。這些觀察表明,盡管抗-Nephrin抗體可被視為特發(fā)性腎病綜合征因素包括MCD和FSGS的新的生物標(biāo)志物和循環(huán)滲透因子,它可能并不是對(duì)所有MCD和FSGS患者具有普遍適用性。例如,最近的研究報(bào)道,Crb2是一種重要的縱裂膈肌蛋白,敲除足細(xì)胞CRB2的小鼠在出生后2個(gè)月或出生后立即出現(xiàn)大量蛋白尿,此外還表現(xiàn)出NPHS1&2、PODXL表達(dá)減少以及腎小球WT-1細(xì)胞減少[55-56]。此外,觀察到給予足細(xì)胞CRB2蛋白的小鼠產(chǎn)生針對(duì)足細(xì)胞蛋白的抗CRB2抗體,伴有蛋白尿和MCD和FSGS[57]的特征性特征。然而,關(guān)于在患有特發(fā)性腎病綜合征的人中檢測(cè)CRB2抗體的報(bào)道仍然有限。

(3)抗-Nephrin抗體陽(yáng)性受者腎移植的脫敏治療。脫敏治療方案對(duì)抗-Nephrin抗體陽(yáng)性的受者,術(shù)后FSGS復(fù)發(fā)研究還比較缺乏,目前FSGS復(fù)發(fā)的研究隊(duì)列未區(qū)分出抗體陽(yáng)性這一亞隊(duì)列。早期在Gallon等人[9]的報(bào)告中,10例高風(fēng)險(xiǎn)腎移植受者接受了兩次術(shù)前血漿置換和5次術(shù)后血漿置換,7例患者在終點(diǎn)未發(fā)生FSGS復(fù)發(fā)。在Bressendorff等人[52]最近的一項(xiàng)研究中,一名接受7輪血漿置換治療的患者痊愈,無(wú)復(fù)發(fā)跡象,沒(méi)有復(fù)發(fā)被認(rèn)為是聯(lián)合高劑量糖皮質(zhì)激素治療的結(jié)果。Carvajal Abreu,K.等人[58]還指出,在14周內(nèi)進(jìn)行25次血漿置換,同時(shí)使用甲強(qiáng)龍和潑尼松龍,對(duì)于預(yù)防移植排斥和FSGS復(fù)發(fā)至關(guān)重要。Kim等人[59]的一項(xiàng)研究還顯示,一名腎移植患者在對(duì)鈣調(diào)磷酸酶抑制劑無(wú)反應(yīng)后出現(xiàn)復(fù)發(fā),對(duì)其進(jìn)行了13個(gè)療程的血漿置換治療,同時(shí)給予利妥昔單抗,患者獲得了部分恢復(fù)。也有研究顯示,在66例pFSGS受者的研究中,37例接受血漿置換聯(lián)合或不聯(lián)合抗CD20單抗的受者,有62%有FSGS復(fù)發(fā),27未接受任何脫敏治療的受者中僅有51%復(fù)發(fā)[60]。這些研究表明,預(yù)脫敏方案可降低FSGS的復(fù)發(fā),但目前暫未有大型研究證實(shí),對(duì)術(shù)前脫敏治療是否能夠影響FSGS的復(fù)發(fā),還存在不一致的結(jié)果。未來(lái)研究脫敏治療對(duì)抗-Nephrin抗體陽(yáng)性FSGS這一亞隊(duì)列的脫敏方案顯得比較重要。

(4)最后,目前還沒(méi)有研究檢測(cè)Nephrin不同表位和抗-Nephrin抗體的相互作用,是否有多個(gè)表位表現(xiàn)出抗體結(jié)合能力,及不同表位的結(jié)合能力是否一致等問(wèn)題并不清楚。對(duì)抗-Nephrin抗體結(jié)合Nephrin的特定區(qū)域以誘導(dǎo)Nephrin重新分布和足細(xì)胞損傷也不是很清楚。也沒(méi)有研究確定阻斷Nephrin表位如何能防止與抗體的相互作用。解決這些問(wèn)題對(duì)于闡明Nephrin抗體致病機(jī)制、對(duì)開(kāi)發(fā)針對(duì)抗-Nephrin抗體陽(yáng)性FSGS患者的特異性藥物非常重要。下一步需要對(duì)Nephrin不同結(jié)構(gòu)域、可作為抗-Nephrin抗體結(jié)合位點(diǎn)的各種表位以及可阻斷這些表位以抑制與抗-Nephrin抗體結(jié)合的潛在配體進(jìn)行全面研究。

(本文轉(zhuǎn)自奧根診斷官網(wǎng))

參考文獻(xiàn)

[1]Büscher AK, Konrad M, Nagel M, et al. Mutations in podocyte genes are a rare cause of primary FSGS associated with ESRD in adult patients. Clin Nephrol. 2012;78(1):47-53. doi:10.5414/cn107320

[2]Isaranuwatchai S, Chanakul A, Ittiwut C, Ittiwut R, Srichomthong C, Shotelersuk V, Suphapeetiporn K, Praditpornsilpa K. Pathogenic variant detection rate by whole exome sequencing in Thai patients with biopsy-proven focal segmental glomerulosclerosis. Sci Rep. 2023 Jan 16;13(1):805. doi: 10.1038/s41598-022-26291-y. PMID: 36646731; PMCID: PMC9842604.

[3]Santín S, Bullich G, Tazón-Vega B, et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome.Clin J Am Soc Nephrol. 2011;6(5):1139-1148. doi:10.2215/CJN.05260610

[4]Gandzali Ngabe, P.E., Bonkano Baoua, D., Lengani, A.H.Y., Yattara, H., Kama Yatte, A., Loumingou, R., Tall, L., Ka, E.F., Niang, A. and Diouf, B. (2023) Focal Segmantal Glomerulosclerosis: Epidemiological, Clinico-Biological, Pathological, Etiological, Therapeutic and Evolutionary Profiles in Dakar. Open Journal of Nephrology, 13, 174-194. doi: 10.4236/ojneph.2023.132017.

[5]Rery TF Yuniarti, Ian Effendi, Zulkhair Ali, Novadian, Suprapti, Elfiani, Novandra AP, Dila Siti Hamidah, Fadil Pramudhya Husein, & Ika Kartika Edi P. (2024). Is It a Tumor or Not? A Case of Focal Segmental Glomerulosclerosis Secondary to Type 2 Diabetes with a Concomitant Renal Pseudotumor.Bioscientia Medicina : Journal of Biomedicine and Translational Research, 8(12), 5801-5813.

[6]Hoyer, J. R., Vernier, R. L., Najarian, J. S., Raij, L., Simmons, R. L., and Michael, A. F., Recurrence of idiopathic nephrotic syndrome after renal transplantation, Lancet, 1972, Vol 2(7773) p. 343-8.

[7]Dantal, J., Baatard, R., Hourmant, M., Cantarovich, D., Buzelin, F., and Soulillou, J. P., Recurrent nephrotic syndrome following renal transplantation in patients with focal glomerulosclerosis: a one-center study of plasma exchange effects, Transplantation, 1991, Vol 52(5) p.

[8]Savin Virginia, J., Sharma, R., Sharma, M., McCarthy Ellen, T., Swan Suzanne, K., Ellis, E., Lovell, H., Warady, B., Gunwar, S., Chonko Arnold, M., Artero, M., and Vincenti, F., Circulating Factor Associated with Increased Glomerular Permeability to Albumin in Recurrent Focal Segmental Glomerulosclerosis, New England Journal of Medicine, 1991, Vol 334(14) p. 878-883.

[9] Gallon, L., Leventhal, J., Skaro, A., Kanwar, Y., and Alvarado, A., Resolution of recurrent focal segmental glomerulosclerosis after retransplantation, N Engl J Med, 2012, Vol 366(17) p. 1648-9.

[10] den Braanker, D. J. W., Maas, R. J., Deegens, J. K., Yanginlar, C., Wetzels, J. F. M., van der Vlag, J., and Nijenhuis, T., Novel in vitro assays to detect circulating permeability factor(s) in idiopathic focal segmental glomerulosclerosis, Nephrology Dialysis Transplantation, 2021, Vol 36(2) p. 247-256.

[11] Gauckler, P., Shin, J. I., Alberici, F., Audard, V., Bruchfeld, A., Busch, M., Cheung, C. K., Crnogorac, M., Delbarba, E., Eller, K., Faguer, S., Galesic, K., Griffin, S., Hru?ková, Z., Jeyabalan, A., Karras, A., King, C., Kohli, H. S., Maas, R., Mayer, G., Moiseev, S., Muto, M., Odler, B., Pepper, R. J., Quintana, L. F., Radhakrishnan, J., Ramachandran, R., Salama, A. D., Segelmark, M., Tesa?, V., Wetzels, J., Willcocks, L., Windpessl, M., Zand, L., Zonozi, R., and Kronbichler, A., Rituximab in adult minimal change disease and focal segmental glomerulosclerosis - What is known and what is still unknown?, Autoimmunity Reviews, 2020, Vol 19(11) p. 102671.

[12] Wei, C., Trachtman, H., Li, J., Dong, C., Friedman, A. L., Gassman, J. J., McMahan, J. L., Radeva, M., Heil, K. M., Trautmann, A., Anarat, A., Emre, S., Ghiggeri, G. M., Ozaltin, F., Haffner, D., Gipson, D. S., Kaskel, F., Fischer, D. C., Schaefer, F., and Reiser, J., Circulating suPAR in two cohorts of primary FSGS, J Am Soc Nephrol, 2012, Vol 23(12) p. 2051-9.

[13] Sharma, M., Zhou, J., Gauchat, J. F., Sharma, R., McCarthy, E. T., Srivastava, T., and Savin, V. J., Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier, Transl Res, 2015, Vol 166(4) p. 384-98.

[14] Doublier, S., Zennaro, C., Musante, L., Spatola, T., Candiano, G., Bruschi, M., Besso, L., Cedrino, M., Carraro, M., Ghiggeri, G. M., Camussi, G., and Lupia, E., Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS, PLOS ONE, 2017, Vol 12(11) p. e0188045.

[15] Meijers, B., Maas, R. J. H., Sprangers, B., Claes, K., Poesen, R., Bammens, B., Naesens, M., Deegens, J. K. J., Dietrich, R., Storr, M., Wetzels, J. F. M., Evenepoel, P., and Kuypers, D., The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis, Kidney International, 2014, Vol 85(3) p. 636-640.

[16] Müller-Deile, J., Sarau, G., Kotb, A. M., Jaremenko, C., Rolle-Kampczyk, U. E., Daniel, C., Kalkhof, S., Christiansen, S. H., and Schiffer, M., Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis, Scientific Reports, 2021, Vol 11(1) p. 4577.

[17] Hou, S., Yang, B., Chen, Q., Xu, Y., and Li, H., Potential biomarkers of recurrent FSGS: a review, BMC Nephrology, 2024, Vol 25(1) p. 258.

[18]Wei, C., El Hindi, S., Li, J., Fornoni, A., Goes, N., Sageshima, J., Maiguel, D., Karumanchi, S. A., Yap, H. K., Saleem, M., Zhang, Q., Nikolic, B., Chaudhuri, A., Daftarian, P., Salido, E., Torres, A., Salifu, M., Sarwal, M. M., Schaefer, F., Morath, C., Schwenger, V., Zeier, M., Gupta, V., Roth, D., Rastaldi, M. P., Burke, G., Ruiz, P., and Reiser, J., Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis, Nat Med, 2011, Vol 17(8) p. 952-60.

[19] Chebotareva, N., Vinogradov, A., Cao, V., Gindis, A., Berns, A., Alentov, I., and Sergeeva, N., Serum levels of plasminogen activator urokinase receptor and cardiotrophin-like cytokine factor 1 in patients with nephrotic syndrome, Clin Nephrol, 2022, Vol 97(2) p. 103-110.

[20] da Silva, C. A., Araújo, L. S., Dos Reis Monteiro, M. L. G., de Morais Pereira, L. H., da Silva, M. V., Castellano, L. R. C., Corrêa, R. R. M., Dos Reis, M. A., and Machado, J. R., Evaluation of the Diagnostic Potential of uPAR as a Biomarker in Renal Biopsies of Patients with FSGS, Dis Markers, 2019, Vol 2019 p. 1070495.

[21] Wei, C., M?ller, C. C., Altintas, M. M., Li, J., Schwarz, K., Zacchigna, S., Xie, L., Henger, A., Schmid, H., Rastaldi, M. P., Cowan, P., Kretzler, M., Parrilla, R., Bendayan, M., Gupta, V., Nikolic, B., Kalluri, R., Carmeliet, P., Mundel, P., and Reiser, J., Modification of kidney barrier function by the urokinase receptor, Nat Med, 2008, Vol 14(1) p. 55-63. 10.1038/nm1696.

[22] Meijers, B., Maas, R. J. H., Sprangers, B., Claes, K., Poesen, R., Bammens, B., Naesens, M., Deegens, J. K. J., Dietrich, R., Storr, M., Wetzels, J. F. M., Evenepoel, P., and Kuypers, D., The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis, Kidney International, 2014, Vol 85(3) p. 636-640.

[23] Maas, R. J. H., Wetzels, J. F. M., and Deegens, J. K. J., Serum-soluble urokinase receptor concentration in primary FSGS, Kidney International, 2012, Vol 81(10) p. 1043-1044.

[24] Maas, R. J. H., Wetzels, J. F. M., and Deegens, J. K. J., Serum suPAR concentrations in patients with focal segmental glomerulosclerosis with end-stage renal disease, Kidney International, 2014, Vol 85(3) p. 711.

[25] Maas, R. J. H., Deegens, J. K. J., and Wetzels, J. F. M., Serum suPAR in patients with FSGS: trash or treasure?, Pediatric Nephrology, 2013, Vol 28(7) p. 1041-1048. 10.1007/s00467-013-2452-5.

[26] Hayek, S. S., Tahhan, A. S., Ko, Y.-A., Alkhoder, A., Zheng, S., Bhimani, R., Hartsfield, J., Kim, J., Wilson, P., Shaw, L., Wei, C., Reiser, J., and Quyyumi, A. A., Soluble Urokinase Plasminogen Activator Receptor Levels and Outcomes in Patients with Heart Failure, Journal of Cardiac Failure, 2023, Vol 29(2) p. 158-167.

[27] Mohammed, M. S. and Ahmed, H. S., Plasminogen activator urokinase receptor as a diagnostic and prognostic biomarker in type 2 diabetic patients with cardiovascular disease, J Cardiovasc Thorac Res, 2023, Vol 15(3) p. 154-160. 10.34172/jcvtr.2023.32895.

[28] Sharma, M., Zhou, J., Gauchat, J. F., Sharma, R., McCarthy, E. T., Srivastava, T., and Savin, V. J., Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier, Transl Res, 2015, Vol 166(4) p. 384-98.

[29] Savin, V. J., Sharma, M., Zhou, J., Gennochi, D., Fields, T., Sharma, R., McCarthy, E. T., Srivastava, T., Domen, J., Tormo, A., and Gauchat, J. F., Renal and Hematological Effects of CLCF-1, a B-Cell-Stimulating Cytokine of the IL-6 Family, J Immunol Res, 2015, Vol 2015 p. 714964.

[30] Savin, V. J., McCarthy, E. T., and Sharma, M., Permeability factors in nephrotic syndrome and focal segmental glomerulosclerosis, Kidney Res Clin Pract, 2012, Vol 31(4) p. 205-13.

[31] McCarthy, E. T., Sharma, M., and Savin, V. J., Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis, Clin J Am Soc Nephrol, 2010, Vol 5(11) p. 2115-21.

[32] Delville, M., Sigdel, T. K., Wei, C., Li, J., Hsieh, S. C., Fornoni, A., Burke, G. W., Bruneval, P., Naesens, M., Jackson, A., Alachkar, N., Canaud, G., Legendre, C., Anglicheau, D., Reiser, J., and Sarwal, M. M., A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation, Sci Transl Med, 2014, Vol 6(256) p. 256ra136.

[33] Komura, K., Fujimoto, M., Matsushita, T., Yanaba, K., Kodera, M., Kawasuji, A., Hasegawa, M., Takehara, K., and Sato, S., Increased serum soluble CD40 levels in patients with systemic sclerosis, J Rheumatol, 2007, Vol 34(2) p. 353-8.

[34] Liu, H., Qi, C. J., Zhuang, Y. M., Gan, J. H., Li, H. L., Yin, C. S., and Zhang, X. G., [Serum levels and clinical significance of soluble CD40 in liver disease], Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2006, Vol 22(6) p. 738-41.

[35] Chebotareva, N., Vinogradov, A., Birukova, Y., Alentov, I., Sergeeva, N., Chemodanova, D., Kononikhin, A. S., and Moiseev, S. V., A pilot study of anti-nephrin antibodies in podocytopaties among adults, Nephrology (Carlton), 2024, Vol 29(2) p. 86-92.

[36] Hengel Felicitas, E., Dehde, S., Lassé, M., Zahner, G., Seifert, L., Schnarre, A., Kretz, O., Demir, F., Pinnschmidt Hans, O., Grahammer, F., Lucas, R., Mehner Lea, M., Zimmermann, T., Billing Anja, M., Oh, J., Mitrotti, A., Pontrelli, P., Debiec, H., Dossier, C., Colucci, M., Emma, F., Smoyer William, E., Weins, A., Schaefer, F., Alachkar, N., Diemert, A., Hogan, J., Hoxha, E., Wiech, T., Rinschen Markus, M., Ronco, P., Vivarelli, M., Gesualdo, L., Tomas Nicola, M., and Huber Tobias, B., Autoantibodies Targeting Nephrin in Podocytopathies, New England Journal of Medicine, 2024, Vol 391(5) p. 422-433.

[37] Watts, A. J. B., Keller, K. H., Lerner, G., Rosales, I., Collins, A. B., Sekulic, M., Waikar, S. S., Chandraker, A., Riella, L. V., Alexander, M. P., Troost, J. P., Chen, J., Fermin, D., Yee, J. L., Sampson, M. G., Beck, L. H., Jr., Henderson, J. M., Greka, A., Rennke, H. G., and Weins, A., Discovery of Autoantibodies Targeting Nephrin in Minimal Change Disease Supports a Novel Autoimmune Etiology, J Am Soc Nephrol, 2022, Vol 33(1) p. 238-252.

[38] Shirai, Y., Miura, K., Ishizuka, K., Ando, T., Kanda, S., Hashimoto, J., Hamasaki, Y., Hotta, K., Ito, N., Honda, K., Tanabe, K., Takano, T., and Hattori, M., A multi-institutional study found a possible role of anti-nephrin antibodies in post-transplant focal segmental glomerulosclerosis recurrence, Kidney Int, 2024, Vol 105(3) p. 608-617.

[39] Norio, R., Heredity in the congenital nephrotic syndrome. A genetic study of 57 finnish FAMILIES WITH A REVIEW OF REPORTED CASES, Ann Paediatr Fenn, 1966, Vol 12 p. Suppl 27:1-94.

[40] Kestil?, M., Lenkkeri, U., M?nnikk?, M., Lamerdin, J., McCready, P., Putaala, H., Ruotsalainen, V., Morita, T., Nissinen, M., Herva, R., Kashtan, C. E., Peltonen, L., Holmberg, C., Olsen, A., and Tryggvason, K., Positionally Cloned Gene for a Novel Glomerular Protein—Nephrin—Is Mutated in Congenital Nephrotic Syndrome, Molecular Cell, 1998, Vol 1(4) p. 575-582.

[41] Kestil?, M., M?nnikk?, M., Holmberg, C., Gyapay, G., Weissenbach, J., Savolainen, E. R., Peltonen, L., and Tryggvason, K., Congenital nephrotic syndrome of the Finnish type maps to the long arm of chromosome 19, Am J Hum Genet, 1994, Vol 54(5) p. 757-64.

[42] Ruotsalainen, V., Ljungberg, P., Wartiovaara, J., Lenkkeri, U., Kestil?, M., Jalanko, H., Holmberg, C., and Tryggvason, K., Nephrin is specifically located at the slit diaphragm of glomerular podocytes, Proc Natl Acad Sci U S A, 1999, Vol 96(14) p. 7962-7.

[43]Topham, P. S., Kawachi, H., Haydar, S. A., Chugh, S., Addona, T. A., Charron, K. B., Holzman, L. B., Shia, M., Shimizu, F., and Salant, D. J., Nephritogenic mAb 5-1-6 is directed at the extracellular domain of rat nephrin, J Clin Invest, 1999, Vol 104(11) p. 1559-66.

[44Holzman, L. B., St John, P. L., Kovari, I. A., Verma, R., Holthofer, H., and Abrahamson, D. R., Nephrin localizes to the slit pore of the glomerular epithelial cell, Kidney Int, 1999, Vol 56(4) p. 1481-91.

[45] Schoeb, D. S., Chernin, G., Heeringa, S. F., Matejas, V., Held, S., Vega-Warner, V., Bockenhauer, D., Vlangos, C. N., Moorani, K. N., Neuhaus, T. J., Kari, J. A., MacDonald, J., Saisawat, P., Ashraf, S., Ovunc, B., Zenker, M., and Hildebrandt, F., Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS), Nephrol Dial Transplant, 2010, Vol 25(9) p. 2970-6.

[46] Denhez, B. and Geraldes, P., "Regulation of Nephrin Phosphorylation in Diabetes and Chronic Kidney Injury", in Protein Reviews: Volume 18, M.Z. Atassi, Editor, Springer Singapore: Singapore. 2017. p. 149-161.

[47] Tian, Y., Chen, X.-m., Liang, X.-m., Wu, X.-b., and Yao, C.-m., SGLT2 inhibitors attenuate nephrin loss and enhance TGF-β1 secretion in type 2 diabetes patients with albuminuria: a randomized clinical trial, Scientific Reports, 2022, Vol 12(1) p. 15695.

[48] Verma, R., Kovari, I., Soofi, A., Nihalani, D., Patrie, K., and Holzman, L. B., Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization, J Clin Invest, 2006, Vol 116(5) p. 1346-59.

[49] Jones, N., Blasutig, I. M., Eremina, V., Ruston, J. M., Bladt, F., Li, H., Huang, H., Larose, L., Li, S. S. C., Takano, T., Quaggin, S. E., and Pawson, T., Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes, Nature, 2006, Vol 440(7085) p. 818-823.

[50] Orikasa, M., Matsui, K., Oite, T., and Shimizu, F., , The Journal of Immunology, 1988, Vol 141(3) p. 807-814.

[51] Kikuchi, H., Kawachi, H., Ito, Y., Matsui, K., Nosaka, H., Saito, A., Orikasa, M., Arakawa, M., and Shimizu, F., Severe proteinuria, sustained for 6 months, induces tubular epithelial cell injury and cell infiltration in rats but not progressive interstitial fibrosis, Nephrology Dialysis Transplantation, 2000, Vol 15(6) p. 799-810.

[52] Bressendorff, I., Nelveg-Kristensen, K. E., Ghasemi, M., Watts, A. J. B., Elversang, J., Keller, K. H., Nielsen, F. C., Szpirt, W., and Weins, A., Antinephrin-Associated Primary Focal Segmental Glomerulosclerosis Successfully Treated With Plasmapheresis, Kidney International Reports, 2024, Vol 9(9) p. 2829-2831.

[53] Cui, Z. and Zhao, M.-h., Anti-nephrin autoantibodies: a paradigm shift in podocytopathies, Nature Reviews Nephrology, 2024, Vol 20(10) p. 639-640.

[54]Batal I, Watts AJB, Gibier JB, Hamroun A, Top I, Provot F, Keller K, Ye X, Fernandez HE, Leal R, Andeen NK, Crew RJ, Dube GK, Vasilescu ER, Ratner LE, Bowman N, Bomback AS, Sanna-Cherchi S, Kiryluk K, Weins A. Pre-transplant anti-nephrin antibodies are specific predictors of recurrent diffuse podocytopathy in the kidney allograft. Kidney Int. 2024 Oct;106(4):749-752. doi: 10.1016/j.kint.2024.07.022.

[55] Tanoue, A., Katayama, K., Ito, Y., Joh, K., Toda, M., Yasuma, T., D’Alessandro-Gabazza, C. N., Kawachi, H., Yan, K., Ito, M., Gabazza, E. C., Tryggvason, K., and Dohi, K., Podocyte-specific Crb2 knockout mice develop focal segmental glomerulosclerosis, Scientific Reports, 2021, Vol 11(1) p. 20556.

[56] M?ller-Kerutt, A., Rodriguez-Gatica, J. E., Wacker, K., Bhatia, R., Siebrasse, J. P., Boon, N., Van Marck, V., Boor, P., Kubitscheck, U., Wijnholds, J., Pavenst?dt, H., and Weide, T., Crumbs2 Is an Essential Slit Diaphragm Protein of the Renal Filtration Barrier, J Am Soc Nephrol, 2021, Vol 32(5) p. 1053-1070.

[57] Hada, I., Shimizu, A., Takematsu, H., Nishibori, Y., Kimura, T., Fukutomi, T., Kudo, A., Ito-Nitta, N., Kiuchi, Z., Patrakka, J., Mikami, N., Leclerc, S., Akimoto, Y., Hirayama, Y., Mori, S., Takano, T., and Yan, K., A Novel Mouse Model of Idiopathic Nephrotic Syndrome Induced by Immunization with the Podocyte Protein Crb2, J Am Soc Nephrol, 2022, Vol 33(11) p. 2008-2025.

[58] Carvajal Abreu, K., Loos, S., Fischer, L., Pape, L., Wiech, T., Kemper, M. J., T?nshoff, B., Oh, J., and Schild, R., Case report: Early onset de novo FSGS in a child after kidney transplantation—a successful treatment, 2023, Vol 11 p.

[59] Kim, Y.-J., Lee, S.-W., Kim, M.-S., Kim, Y.-J., Choi, J.-Y., Cho, J.-H., Kim, C.-D., Kim, Y.-L., Yun, W.-S., Huh, S., Lim, J.-H., and Park, S.-H., Anuria after kidney transplantation diagnosed as early recurrence of focal segmental glomerulosclerosis combined with acute calcineurin inhibitor nephrotoxicity: a case report and literature review, BMC Nephrology, 2024, Vol 25(1) p. 123.

[60]Alasfar S , Matar D , Montgomery RA ,et al. Rituximab and therapeutic plasma exchange in recurrent focal segmental glomerulosclerosis postkidney transplantation[J]. Transplantation, 2018,102(3):e115-e120. DOI: 10.1097/TP.000000000000200